Assessing Therapeutic Potential of Magnetic Mesoporous Nanoassemblies for Chemo-Resistant Tumors

نویسندگان

  • Lina Pradhan
  • Bhushan Thakur
  • Rohit Srivastava
  • Pritha Ray
  • Dhirendra Bahadur
چکیده

Smart drug delivery system with strategic drug distribution is the future state-of-the-art treatment for any malignancy. To investigate therapeutic potential of such nanoparticle mediated delivery system, we examined the efficacy of dual drug-loaded, pH and thermo liable lipid coated mesoporous iron oxide-based magnetic nanoassemblies (DOX:TXL-LMMNA) in mice bearing both drug sensitive (A2780(S)) and drug resistant (A2780-CisR) ovarian cancer tumor xenografts. In presence of an external AC magnetic field (ACMF), DOX:TXL-LMMNA particles disintegrate to release encapsulated drug due to hyperthermic temperatures (41-45 ºC). In vivo bio distribution study utilizing the optical and magnetic properties of DOX:TXL-LMMNA particles demonstrated minimum organ specific toxicity. Noninvasive bioluminescence imaging of mice bearing A2780(S) tumors and administered with DOX-TXL-LMMNA followed by the application of ACMF revealed 65% less luminescence signal and 80% mice showed complete tumor regression within eight days. A six months follow-up study revealed absence of relapse in 70% of the mice. Interestingly, the A2780-CisR tumors which did not respond to drug alone (DOX:TXL) showed 80% reduction in luminescence and tumor volume with DOX:TXL-LMMNA after thermo-chemotherapy within eight days. Cytotoxic effect of DOX:TXL-LMMNA particles was more pronounced in A2780-CisR cells than in their sensitive counterpart. Thus these novel stimuli sensitive nanoassemblies hold great promise for therapy resistant malignancies and future clinical applications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

In vitro evaluation of PEGylated mesoporous MgFe2O4magnetic nanoassemblies (MMNs) for chemo-thermaltherapy

In vitro evaluation of PEGylated mesoporous MgFe2O4 magnetic nanoassemblies (MMNs) for chemo-thermal therapy" (2013). A size tunable synthesis of mesoporous MgFe 2 O 4 magnetic nanoassemblies (MMNs) through a PEG-diacid mediated polyol method is reported. The PEG-diacid coated MMNs exhibit a significant specific surface area of 92 m 2 g À1 and saturation magnetization of 57 emu g À1. These MMNs...

متن کامل

Mesoporous composite nanoparticles for dual-modality ultrasound/magnetic resonance imaging and synergistic chemo-/thermotherapy against deep tumors

High-intensity focused ultrasound (HIFU) is a promising and noninvasive treatment for solid tumors, which has been explored for potential clinical applications. However, the clinical applications of HIFU for large and deep tumors such as hepatocellular carcinoma (HCC) are severely limited by unsatisfactory imaging guidance, long therapeutic times, and damage to normal tissue around the tumor du...

متن کامل

PEGylated FePt-Fe3O4 composite nanoassemblies (CNAs): in vitro hyperthermia, drug delivery and generation of reactive oxygen species (ROS).

Chemothermal therapy is widely used in clinical applications for the treatment of tumors. However, the major challenge is the use of a multifunctional nano platform for significant regression of the tumor. In this study, a simple synthesis of highly aqueous stable, carboxyl enriched, PEGylated mesoporous iron platinum-iron(ii,iii) oxide (FePt-Fe3O4) composite nanoassemblies (CNAs) by a simple h...

متن کامل

Au capped magnetic core/mesoporous silica shell nanoparticles for combined photothermo-/chemo-therapy and multimodal imaging.

Uniform Au NRs-capped magnetic core/mesoporous silica shell nanoellipsoids (Au NRs-MMSNEs) were prepared by coating a uniform layer of Au NRs on the outer surface of a magnetic core/mesoporous silica shell nanostructure, based on a two-step chemical self-assembly process. This multifunctional nanocomposite integrate simultaneous chemotherapy, photo-thermotherapy, in vivo MR-, infrared thermal a...

متن کامل

Antiproliferative effects of flavonoid fractions from Calendula officinalis flowers in parent and tamoxifen resistant T47D human breast cancer cells

The risk of human breast cancer is concerned to cumulative exposure of the breast cells to endogenous estrogens. Strategies aiming at reducing the production of estrogens may be useful for the prevention of estrogens-related breast cancer. Several natural products with plant origin have the potential value as chemo-preventive or therapeutic agents in cancer. Flavonoids, the natural polyphenol c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016